79 research outputs found

    Real single ion solvation free energies with quantum mechanical simulation

    Full text link
    Single ion solvation free energies are one of the most important properties of electrolyte solutions and yet there is ongoing debate about what these values are. Only the values for neutral ion pairs are known. Here, we use DFT interaction potentials with molecular dynamics simulation (DFT-MD) combined with a modified version of the quasi-chemical theory (QCT) to calculate these energies for the lithium and fluoride ions. A method to correct for the error in the DFT functional is developed and very good agreement with the experimental value for the lithium fluoride pair is obtained. Moreover, this method partitions the energies into physically intuitive terms such as surface potential, cavity and charging energies which are amenable to descriptions with reduced models. Our research suggests that lithium's solvation free energy is dominated by the free energetics of a charged hard sphere, whereas fluoride exhibits significant quantum mechanical behavior that cannot be simply described with a reduced model.Comment: 13 pages, 4 figure

    Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Get PDF
    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.Comment: 28 pages, 5 figure

    Smoothed Dissipative Particle Dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    Full text link
    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface

    Mass Density Fluctuations in Quantum and Classical descriptions of Liquid Water

    Get PDF
    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density uctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential

    Variational Transition State Theory Evaluation Of The Rate Constant For Proton Transfer In A Polar Solvent

    Get PDF
    Variational transition state theory (VTST) is used to calculate rate constants for a model proton transfer reaction in a polar solvent. We start from an explicit description of the reacting solute in a solvent, and we model the effects of solvation on the reaction dynamics by a generalized Langevin equation (GLE) for the solute. In this description, the effects of solvation on the reaction energetics are included in the potential of mean force, and dynamical, or nonequilibrium, solvation is included by solvent friction. The GLE solvation dynamics are approximated by a collection of harmonic oscillators that are linearly coupled to the coordinates of the reacting system. This approach is applied to a model developed by Azzouz and Borgis [J. Chem. Phys. 98, 7361 (1993)] to represent proton transfer in a phenol-amine complex in liquid methyl chloride. In particular, semiclassical VTST, including multidimensional tunneling contributions, is applied to this model with three explicit solute coordinates and a multioscillator GLE description of solvation to calculate rate constants. We compare our computed rate constants and H/D kinetic isotope effects to previous calculations using other approximate dynamical theories, including approaches based on one-dimensional models, molecular dynamics with quantum transitions, and path integrals. By examining a systematic sequence of 18 different sets of approximations, we clarify some of the factors (such as classical vibrations, harmonic approximations, quantum character of reaction-coordinate motion, and nonequilibrium solvation) that contribute to the different predictions of various approximation schemes in the literature. (C) 2001 American Institute of Physics

    Potential quantum advantage for simulation of fluid dynamics

    Full text link
    Numerical simulation of turbulent fluid dynamics needs to either parameterize turbulence-which introduces large uncertainties-or explicitly resolve the smallest scales-which is prohibitively expensive. Here we provide evidence through analytic bounds and numerical studies that a potential quantum exponential speedup can be achieved to simulate the Navier-Stokes equations governing turbulence using quantum computing. Specifically, we provide a formulation of the lattice Boltzmann equation for which we give evidence that low-order Carleman linearization is much more accurate than previously believed for these systems and that for computationally interesting examples. This is achieved via a combination of reformulating the nonlinearity and accurately linearizing the dynamical equations, effectively trading nonlinearity for additional degrees of freedom that add negligible expense in the quantum solver. Based on this we apply a quantum algorithm for simulating the Carleman-linerized lattice Boltzmann equation and provide evidence that its cost scales logarithmically with system size, compared to polynomial scaling in the best known classical algorithms. This work suggests that an exponential quantum advantage may exist for simulating fluid dynamics, paving the way for simulating nonlinear multiscale transport phenomena in a wide range of disciplines using quantum computing

    Optical assembly of nanostructures mediated by surface roughness

    Full text link
    Rigorous understanding of the self-assembly of colloidal nanocrystals is crucial to the development of tailored nanostructured materials. Despite extensive studies, a mechanistic understanding of self-assembly under non-equilibrium driven by an external field remains an ongoing challenge. We demonstrate self-assembly by optical tweezers imposing an external attractive field for cubic-phase sodium yttrium fluoride nanocrystals. We show that surface roughness of the nanocrystals is a decisive factor for contact leading to assembly between the nanocrystals, manifested by the roughness-dependent hydrodynamic resistivity. This provides direct evidence that dynamics are equally important to energetics in understanding self-assembly. These results have implications in a wide variety of different fields, such as in understanding the factors that mediate oriented attachment-based crystal growth or in interpreting the structure of binding sites on viruses.Comment: 21 pages, 3 main figures, 8 supplemental figures, 2 supplemental videos. Submitted to Physical Review Letter
    • …
    corecore